

Project ALIN
Automatic Lawn Irrigation Network

December 2016 - Thomas Dye, John Walter

CSS 427 - Embedded Systems - Dr. Yang Peng

University of Washington

2 | P r o j e c t A L I N

Introduction
Our project was to create a “smart” irrigation system by using sensor analysis to control water flow to designated zones
to only water plants when necessary. The challenge we faced is that different parts of a yard have different watering
requirements. We needed to sense these differences and independently schedule watering for each unique locale.

This project was made possible through cooperation with UWB staff member Rafael Machado De L Silva. He has a
similar project he wants created that has a high degree of feature overlap. Throughout the project, Rafael operated in
the capacity of an advisor and sponsor, supplying us with both advice and the majority of the hardware used.

System Overview
Basic system:

• A single command station houses all schedule logic and provides a user interface.
• Users can configure the system and do on-demand actions through a web interface, connecting over WiFi.
• The command station talks to some arbitrary number of controllers, remotely located, using XBee radios.
• Each controller gathers sensor data from any number of irrigation zones and reports that to the command

station.
• The controller also opens valves to control irrigation when the command station sends an irrigation schedule.

The command station creates or updates an irrigation plan and sends start and stop times to the controller. At the
prescribed time, the controller opens and closes valves connected to piping to deliver water to zones.

The command station’s evaluation of a zone’s irrigation schedule can be augmented by user preference and the number
(and type) of sensors in use. Our minimum goal for this iteration of the project was to collect soil moisture information
as use that for evaluation. Sensor collection for temperature, humidity, and brightness have also been implemented.
Online weather data analysis continues to be a goal for a future version of this project.

Hardware
Project ALIN is comprised of two embedded devices networked together with XBee 900Mhz radios, a single sensor pod,
and an electric water valve, both of which are associated with a zone. The command station is powered by a Raspberry
Pi 3 and the controller is Arduino-based.

Figure 1: System Layout

3 | P r o j e c t A L I N

The command station is a low power, internet connected embedded device. It has three responsibilities:

• Receive sensor data from controllers for all zones
• Evaluate sensor data and send out irrigation schedules when necessary
• Provide direct user interaction to configure and control the system

Based off of the scheduling algorithm, irrigation is automatic when conditions warrant it; however, manual control is
also possible.

Figure 2: Command Station

The controller is designed to be wall mounted outdoors. It has three responsibilities:

• Transmits sensor data both periodically and on demand
• Receives scheduled irrigation events
• And opens, closes, or toggles the valve state for a zone.

Automatic valve control is handled through a real-time clock powered scheduler, but all functionality has manual
controls through a web interface provided by the command station.

One controller handles multiple zones where relay controlled 12VDC electric valves handle water flow to the irrigation
heads. Since the user defines how zones are configured, the granularity of control with irrigation is dependent on how
fancy installers get with their plumbing.

4 | P r o j e c t A L I N

Figure 3: Valve Manifold

Sensor pods are designed to be remotely located inside the zone you’re watering. Each contains four sensors, collecting:

• Temperature
• Humidity
• Light
• Moisture

Sensor pods have to be relatively weatherproof, but also need to be ventilated for accurate temperature and humidity
readings. A glass lid is used to enclose the unit and provide consistent readings to the light sensor that do not diminish
over time through dirt and UV discoloration.

5 | P r o j e c t A L I N

Figure 4: Sensor Pod - Closed

Figure 5: Sensor Pod - Open

6 | P r o j e c t A L I N

Scheduling Algorithm
The watering schedule is affected by the following conditions:

• Time of day
• Amount of sunlight being received
• Temperature and humidity
• Soil conditions

These conditions are independently interpreted in the following way:

• Sunny days cause more evaporation than cloudy days
• Hotter days cause much more evaporation than cooler days
• Humid days prevent evaporation, but dry days promote it
• Dry soil is undesirable

The command station will determine if a zone is irrigated depending on combinations of readings taken by pod sensor
inputs. Each sensor type has readings that can be distinguished as a ‘0’ or ‘1’ value, where a user-defined threshold
separates the two.

 0 1
Temperature (A) Not Hot Hot
Humidity (B) Not Humid Humid
Light (C) Not Sunny Sunny
Soil Moisture (D) Not Moist Moist

Table 1: Sensor Threshold Categories

For any combination of the four inputs, there is one decision output: irrigate (1), or do not irrigate (0). To determine
the irrigation algorithm, each combination of conditions was evaluated to determine if watering was necessary. From
that, the following truth table was formed:

A B C D Output X
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

Table 2: Algorithm Truth Table

This combination of all inputs and outputs can be simplified down to the following Boolean equation:

X = ~B~D + C~D + A~D + A~BC

7 | P r o j e c t A L I N

Thus, the command station will recommend irrigation any time when the following conditions persist:

• Dry air and dry soil, or
• Sunny day and dry soil, or
• Hot air and dry soil, or
• Hot and dry air, and sunny.

As project ALIN is meant to operate as a demonstration system, it’s not possible to collect data throughout the day as it
normally would for a production system. The final decision to irrigate is revised in the following way:

• Evaluate the average of the last four sensor readings
• Compare those averages against thresholds for each sensor type
• Schedule irrigation if the recommended conditions exist, timed to be one minute in the future for a watering

duration of one minute.

Sensor and Data Specification
The following sensors are in use:

Sensor Model Format Data Notes
Time DS3231 I2C S:M:H:W:D:M:Y Real Time Clock
Temperature DHT11 Digital Integer Value Measurements in centigrade scaling
Humidity DHT11 Digital Integer Value Percentage ratio of dew point to temperature
Light BH1750 I2C Integer Value Measurements of intensity in lux
Moisture YL38 Analog Integer Value Resistance between 0 and 1023

Table 3: Sensor Overview

Message payloads are delivered inside XBee frames as comma delimited values. We devised a structured
communication protocol where the payload begins with a command code and then supplies additional parameters as
necessary.

Code Code,
HEX

Code,
DEC

Additional
Payload

Notes

C_ACK 0x00 0

Response sent when a command is received but not recognized.

C_SUCCESS 0x01 1

Response sent when a command is received, understood, and is executed.

C_FAILURE 0x02 2

Response sent when a command is received, understood, but does not have valid parameters.

C_GET_VALVE_STATE 0x10 16 Z Request the valve state for a zone Z. Generates a C_VALVE_DATA response.

C_SET_OPEN_VALVE 0x11 17 Z Instruct the valve open for a zone Z. Generates a C_SUCCESS response.

C_SET_CLOSE_VALVE 0x12 18 Z Instruct the valve close for a zone Z. Generates a C_SUCCESS response.

C_SET_TOGGLE_VALVE 0x13 19 Z Instruct the valve position (open/close) to toggle for a zone Z. Generates a C_SUCCESS response.

C_SET_TIME 0x14 20 S,M,H,W,D,M,Y Instruct the RTC to update system time. Parameters are S:seconds (0-59), M:minutes (0-59),
H:hours (0-23), W:weekday (1-7), D:day (1-31), M:month (1-12), Y:year (0-99). Generates a
C_SUCCESS response.

C_GET_TIME 0x15 21

Request the time from a device. Generates a C_TIME_DATA response.

C_GET_ZONE_SENSORS 0x16 22 Z Request sensor data for a zone Z. Generates a C_SENSOR_DATA response.

C_GET_ALL_SENSORS 0x17 23

Request sensor data for all zones. Generates a C_SENSOR_DATA response for each defined zone.

C_GET_SCHEDULE 0x18 24 Z Request the irrigation schedule for a zone Z. Generates a C_SET_SCHEDULE response.

C_SET_SCHEDULE 0x19 25 Z,H,M,D Instruct the device to begin irrigation at a specified time and duration for a zone Z. Parameters
are H:hour (0-23), M:minute (0-59), D:duration(in minutes). Generates a C_SUCCESS response.

C_VALVE_DATA 0x30 48 Z,S Data for valve state for a zone Z. State S = 0 is closed. State S = 1 is open.

C_TIME_DATA 0x31 49 S,M,H,W,D,M,Y Data for the time on a device. Parameters are S:seconds (0-59), M:minutes (0-59), H:hours (0-
23), W:weekday (1-7), D:day (1-31), M:month (1-12), Y:year (0-99).

C_SENSOR_DATA 0x32 50 Z,L,T,H,M Data for sensor readings for a zone Z. Parameters are L:light (lux), T:temp (celcius), H:humidity
(percentage), M:moisture (level)

Table 4: Radio Data Payload Specification

8 | P r o j e c t A L I N

All payload information is transmitted as character arrays as literal values, i.e., the int 1023 is four bytes long, sent as
characters ‘1’ ‘0’ ‘2’ ‘3’. For example, the payload 50,1,138,22,45,1023 describes:

• Sensor data for zone 1
• Brightness is 138 lux, temperature is 22 C, humidity is 45%, and the soil is completely dry.

This system is designed to primarily be autonomous, but threshold and user preferences are configured via a web
interface provided by the command station.

Figure 6: Command Station Web Interface

The following communication processing is implemented on the command station:

Command Trigger Sends Expects
C_GET_VALVE_STATE Sent on 10 second interval 16,1 48,1,0
C_SET_OPEN_VALVE On demand 17,1 1
C_SET_CLOSE_VALVE On demand 18,1 1
C_SET_TOGGLE_VALVE On demand 19,1 1
C_GET_ZONE_SENSORS On demand 22,1 50,1,273,24,33,1023
C_SET_SCHEDULE Automatic, by scheduling algorithm 25,1,13,13,1 1
C_SENSOR_DATA Periodically received from controller - 50,1,273,24,33,1023

Table 5: Command Station Radio Communication Sample

Note: Expected data is shown as interpreted in Figure 6.

9 | P r o j e c t A L I N

The controller is designed to operate as a headless unit, however non-interactive serial access is available over analog
pins 10 and 11 for RX and TX for diagnostic output. Radio communication and controller actions are logged to the serial
console. Independent sequence counters exist for sent and received data to aid identification of transmission failures.

The following communication is implemented on the controller:

 Command Trigger Receives Sends
C_ACK Received unrecognized code 99 0
C_SUCCESS Received with correct parameters 19,1 1
C_FAILURE Received with bad parameters 19,0 2
C_GET_VALVE_STATE Received periodically 16,1 1
C_SET_OPEN_VALVE Received periodically 17,1 1
C_SET_CLOSE_VALVE Received periodically 18,1 1
C_SET_TOGGLE_VALVE Received periodically 19,1 1
C_GET_ZONE_SENSORS Received periodically 22,1 50,1,273,24,33,1023
C_GET_ALL_SENSORS Received periodically 23 50,1,273,24,33,1023
C_SET_SCHEDULE Received periodically 25,1,13,13,1 1
C_SENSOR_DATA Sent on 30 second interval, or when

requested by the command station
22,1 or 23 50,1,273,24,33,1023

Table 6: Controller Radio Communication Sample

Controller radio communication sample notes:

• The command code ‘99’ is undefined.
• A C_FAILURE is generated because zone 0 is undefined.
• The C_GET_ALL_SENSORS generates the same response because only one sensor zone is defined. In the event

of there being multiple zones, multiple C_SENSOR_DATA transmissions would be sent in rapid succession.

Both the command station and the controller use the retransmission protocol built into the XBee stack. The controller
will additionally attempt up to five additional retransmissions (beyond the original transmission) with acknowledgement
periods up to five seconds each before giving up. For any retransmission, the last message is resent and the internal
send sequence counter is not incremented.

Serial console example:

Sent seq: 0, data: 50,1,273,24,33,1023
Error on seq: 0, the remote XBee did not receive our packet.
Sent seq: 0, data: 50,1,273,24,33,1023
Error on seq: 0, the remote XBee did not receive our packet.
Sent seq: 0, data: 50,1,273,24,33,1023
Error on seq: 0, the remote XBee did not receive our packet.
Sent seq: 0, data: 50,1,273,24,33,1023
Error on seq: 0, the remote XBee did not receive our packet.
Sent seq: 0, data: 50,1,273,24,33,1023
Error on seq: 0, the remote XBee did not receive our packet.
Sent seq: 0, data: 50,1,273,24,33,1023
Error on seq: 0, the remote XBee did not receive our packet.
Error on seq: 0, maximum number of retransmissions exceeded.
Received seq: 0, data: 16,1
Sent seq: 1, data: 48,1,0

10 | P r o j e c t A L I N

Exception Report
Command Station
The web server uses a file-based data sharing scheme with the command station, such that the web server writes its
data to files that the command station reads (and only reads) from, and likewise the command station writes its data to
files that the web server reads (and only reads) from. This is not a good design for a couple reasons, not the least of
which being that the web server cannot be moved to the cloud using this scheme. We went with this design because we
did not know how to better achieve our goals, and it wasn’t until late into the implementation that we learned that the
proper design would be to have the web server alone read and write to a database while providing the command station
an interface to access the database through the web server using GET and POST requests. For the purpose of our
demonstration, our current file-based design was sufficient. However for ALIN 2.0, we intend to gut the command
station and web server of file-based data sharing and implement the above mentioned GET/POST design.

Controller
The controller logs the occasional bad packet received from the command station, but so far this hasn’t resulted in any
loss of functionality (the commands still process despite the “ZB_RX_RESPONSE: format not expected” error). We would
like to eventually eliminate string processing for building data payloads, as the original implementation used with
character arrays on the stack was causing system crashes for unknown reasons (which were not related to off-by-one
errors).

One error that presented itself during testing before presentation is that the discharging solenoid in the valve was
causing sporadic controller resets through excessive electrical noise that was being generated. This was also apparent
on the monitor connected to the computer which would distort. We might have damaged it through overheating as this
was not always a problem, but it’s worth reinvestigating sharing a common ground for all components, or at least,
electrically isolating it and preventing feedback to the controller.

Team Assignments and Responsibilities
In the beginning of the project, both members worked together at drafting the design and researching the different
options we had to achieve our goal implementing this system. We worked together when we were trying to establish
communication between two devices over an XBee radio connection. After the point of establishing connectivity,
however, we both split off in separate directions. Thomas was solely responsible for putting together the hardware and
housing involving the sensors and the Arduino-based controller side of the system, while John was responsible for the
Raspberry Pi based command station and web server. For the most part, these two roles were solely completed by each
respective team member. There was a point in the middle of the project where we worked together again to devise the
scheduling algorithm, and again nearing the end of the project when we integrated our parts together and performed
testing and validation. Distribution of work was varied, but equal.

11 | P r o j e c t A L I N

Appendix
XBee Radio Configuration
900 MHz Series 2 Radio 1: (blue tape, command station)

• Product Family: XBP9B-DM
• Function set: XBee PRO 900HP 200K
• Firmware: 071
• Network ID/PAN: 1337
• Standard Router
• Serial High: 0013A200
• Serial Low: 40E3CD0F
• API Mode 1 (without escapes)

900 MHz Series 2 Radio 2: (controller)

• Product Family: XBP9B-DM
• Function set: XBee PRO 900HP 200K
• Firmware: 071
• Network ID/PAN: 1337
• Non-Routing Module
• Serial High: 0013A200
• Serial Low: 40E3CD1E
• API Mode 2 (with escapes)

Note: The different API modes are required as the Python XBee library only works with mode 1, and the Arduino XBee
library only works with mode 2. Escaping seems to only be important with regard to the library in use and the mode
mismatch does not inhibit communication between devices.

12 | P r o j e c t A L I N

Parts List
Source Item Quantity Unit Price Total Price Purpose

School Arduino Mega 2560 1 $45.95 $45.95 Controller logic board

 Wireless Shield 1 $28.30 $28.30 Controller XBee interface

 XBee Explorer 1 $24.95 $24.95 Command station XBee interface

 XBee-Pro 900 S3B 2 $59.95 $119.90 XBee radios

 Raspberry Pi 3 1 $39.95 $39.95 Command station logic board

 Raspberry Pi Case 1 $5.00 $5.00 Command station enclosure

 Raspberry Pi Power 1 $7.95 $7.95 Command station power source

 16gb Card 1 $14.95 $14.95 Command station storage device

 Sensor Modules 1 $21.00 $21.00 Controller sensors

 Water Valve 1 $6.95 $6.95 Controller valve manifold

 Total $314.90

Home Depot 1x6x6 Wood Board 1 $5.52 $5.52 Controller base construction material

 1/2" 2' PVC Pipe 1 $1.22 $1.22 Sensor tower construction material

 1/2" Wood Dowel 1 $1.77 $1.77 Sensor tower construction material

 2 Conductor Wire 6 $0.21 $1.26 General electrical

 7 Conductor Wire 10 $0.73 $7.30 General electrical

 #8 1/2" Wood Screws 1 $0.98 $0.98 General construction material

 1/2" F 90 Deg Pipe 2 $0.28 $0.56 Plumbing

 1/2" F Adapter 2 $0.53 $1.06 Plumbing

 22-18AWG .25 Spade 1 $2.99 $2.99 General electrical

 1/2" Pipe Straps 1 $2.14 $2.14 Plumbing

 3/32" Heat Shrink 1 $1.99 $1.99 General electrical

 Tax $2.55

 Total $29.34

Fred Meyer Rubbermaid 1 $3.24 $3.24 Controller enclosure

 Food storage 1 $6.99 $6.99 Sensor tower glass enclosure

 Tax $1.00

 Total $11.23

Amazon 120pcs Jumper Wire 1 $8.68 $8.68 General electrical

 5pc Terminal Block 1 $7.99 $7.99 General electrical

 12VDC Power Supply 1 $6.99 $6.99 General electrical

 Total $23.66

Adafruit DS3231 RTC 1 $13.95 $13.95 Controller sensor

 Shipping $9.65

 Total $23.60

Project Grand total $402.73

	Introduction
	System Overview
	Hardware
	Scheduling Algorithm
	Sensor and Data Specification
	Exception Report
	Command Station
	Controller

	Team Assignments and Responsibilities
	Appendix
	XBee Radio Configuration
	Parts List

